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Abstract— This paper studies a stochastic game theoretic the analysis allows one to compute the Attacker’s optimal
approach to security and intrusion detection in communicalon  strategy as a probability mass distribution on the nodes
and computer networks. Specifically, arAttacker and a Defender to attack. Similarly, the Defenders optimal strategy is a

take part in a two-player game over a network of nodes o S .

whose security assets and vulnerabilities are correlatedsuch a probability mass distribution on the nodes to monitor (tO.

network can be modeled using weighted directed graphs with Collect and process data and detect attacks). However, in
the edges representing the influence among the nodes. The gam this work [5], the security assets are still assumed to be
can be formulated as a non-cooperative zero-sum or nonzero- independent. Also, the dynamics of the ID problem when

sum stochastic game. However, due to correlation among the y,4eg are compromised along the play have not been taken

nodes, if some nodes are compromised, the effective secyrit . t ¢

assets and vulnerabilities of the remaining ones will not sty Into accoun . _ )

the same in general, which leads to complex system dynamics. The work in [6] addresses this problem using the frame-

We examine existence, uniqueness, and structure of the stbn  work of zero-sum stochastic games [8]. The network is now

and also provide numerical examples to illustrate our model  modeled as a discrete-time or continuous-time Markov chain
. INTRODUCTION where the network states are defined by the states (com-

omised or not) of the constituent nodes. This formulation

- r
Toqtay, azc?mpute:jnftviprkTDbeclome ub|qU|tou;, netwoﬁgus takes into account the dynamics of the problem and
security andntrusion detection(ID) play a more and more allows one to incorporate correlation among nodes in terms

important role. The main task of antrusion detection sys- of vulnerability. The analysis is nonetheless limited tooze

tem(IDS) is to detect intrusions and report them to a systerg |, games and again, the security assets are considered to
administrator. Among various approaches, non-Coopceratiée independent ,

game theory has recently been employed extensively to stu YThis paper attempts to extend these earlier works to con-
ID problems [1]-[6].

. . . ) struct a more comprehensive network security and intrusion

In a general setting, a security game is defined betwee .
. etection model. We develop a network model based on

two players: an Attacker and a Defender (the IDS). A . . .

. . ; inear influence networkproposed in [7]. This model, when

formulation of security games as static games can be foun ; .

used under the framework of stochastic games, permits us to

n [4]. In [3], the.authors con5|der. gecurlty games Wlthfake into consideration the correlation among the nodes in
imperfect observations and use the finite-state Markovncha{ermS of both security assets and vulnerabilities

framework to analyze such games. The work in [4] employs h ¢ of thi i ed ol n th
the framework of Bayesian games to address the intrusion € rest ot his paper IS organized as Tollows. In the

detection problem in wireless ad hoc networks, where rfmainir?g part of this section, we summarize the_notatiqns
mobile node viewed as a player confronts an opponentwhoggd varlables used throughqut this paper. Next, in Section
typeis unknown. I1, we introduce two linear influence network models for

In [5], the author examines the intrusion detection probler'ﬁecutrr']ty asseti and vulgeratghuesthln Sectlccj)nl lll, warfor
in heterogenous networks as a nonzero-sum static game. ¢ (N€ security game based on these Models as a zero-sum

a complex network, nodes are of different levels of impor-StOChaSt'c game and present results on existence, unigjene

tance to the Defender, and also appear variably attracti\"i‘é]d structure of the solution. We then provide a numerical

to the Attacker. Heterogeneity also stems from hierarcgg(ample in Section IV. Finally, some concluding remarks of

and correlation among nodes. It is thus essential to consi ection V end the paper.

scenarios where nodes have different security assets, Also

apart from a node’s security asset, if we take into accouummary of notations and variables used in this paper
the players’ motivations, the cost of attacking, the cost of
monitoring, and other factors, the game is no longer a zero-
sum one. Using thdlash Equilibrium(NE) solution concept,

o /. Set of nodes in the network.
« n: Number of nodes in the network.
o &5 Set of edges representing the influence among node
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o &: Set of edges representing the influence among node

vulnerabilities.

&;j: A directed edge from nodeto nodej, g; € & or

gj € &

Y. Weighted directed graph for node security assets,
Gs={N, s}



%,;: Weighted directed graph for node vulnerabilities, e« ai‘j: A collective entry that includes the instant payoff

Gy ={N, 6} and the transition probabilities to all game elements,
[, lij: Influence matrix for security assets and its entries. ai‘j = a1-kj + z|p:1qikj'l'|, given that the players are cur-
wij: Influence of nodé on nodej in terms of security rently at game elemerity, player 1 plays pure strategy
assets, wherg j € A i, and player 2 plays pure strategy

s={s1,%,...,5}: Vector of independent security as- b}‘j: Value of ai‘} when we replace game elemenmiss
sets. with their valueshl, =af + 3P, diivi.
x={x1,Xz,...,Xn}: Vector of effective security assets. . yk: probability that player 1 plays pure strategyhen
H, hij: Support matrix and its entries;; signifies the playing game elemerity at thet-th stage of the game.
support that node gives nodej (against attacks), & For stationary strategies [8], the supersctiptill be

hij <1Vi,jes. omitted.

hj: Support to nodg, j € .4, hj =3, hjj. « 2% Probability that player 2 plays pure strategwhen
Phy: Probability that nodg is compromised when player playing game elemerit, at thet-th stage of the game.
1 (the Attacker) attacks, player 2 (the Defender) does « ¥ (k=1,...,p, t=1,2,...): Strategy for player 1, a
not defend the node, and the support to nde equal set of m-vectors each of which is a mixed strategy of
to 1 (full support). player 1 at game elemehff andt-th stage of the game.

plo: Probability that nodg is compromised when the , ¢ (k=1,...,p, t =1,2,...): Strategy for player 2, a
Attacker attacks, the Defender does not defend the node, set of n-vectors each of which is a mixed strategy of
and the support to nodgis equal to 0 (no support). player 2 at game elemehf andt-th stage of the game.
py,: Probability that nodg is compromised when the ck: Pure strategy for the Attacker at game elemeFi.
Attacker attacks, the Defender defends the node, and, dﬁﬂ; Pure strategyj for the Defender at game element
the support to nod¢ is equal to 1 (full support). M.

Péo: Probability that nodg is compromised when the . pk(ck,d¥): Probability that the attack is successful given
Attacker attacks, the Defender defends the node, and that the Attacker plays pure stratedyand the Defender
the support to nod¢ is equal to 0 (no support). plays pure strategg® at game elemerit,.

}51,527---5;)} - States in the state space of the system. , y— (v, v,,...,v,): Value vector of the stochastic game.

M1,2,...Tp}: Game elements of the stochastic game, , val(B): Value of the zero-sum matrix game given by the
each of which corresponds to a state of the system. matrix B.

pk: Probability that the network goes back to stSie

given that it is currently in stat§, the Attacker attacks ||, LINEAR INFLUENCE NETWORK MODELS FOR

one node and the attack fails. SECURITY ASSETS AND FOR VULNERABILITIES
pk: Probability that the game ends given that it is

currently in stateS,, the Attacker attacks one node and We present in this section a network model based on the
the attack fails. concept of linear influence networks [7]. The network will be

p'a()ﬁ Probability that the network goes back to stsie represented by two weighted directed graphs, one sigujfyin

given that it is currently in stat& and the Attacker the relationship of security assets and the other denoting
does not attack any node. vulnerability correlation among the nodes.

p‘g)e: Probability that the game ends given that it is _ . _
currently in stateS, and the Attacker does not attackA' Linear influence network model for security assets

any node. For a particular node, the general tesacurity assets

a,-k-: Instant amount that player 2 pays player 1 at gamesed to signify how important the node is to the network.
elementy, if player 1 plays pure strategyand player All the security assets of a network can be modeled as a
2 plays pure strategy. weighted directed grapids = {4, &s} where 4" is the set

q}‘j': Probability that both players have to play gameof nodes, and the elements of ggtrepresent the influence
elementl’; next, given that they are currently at gameamong the nodes. Let be the cardinality of#". For each
elemently, if player 1 plays pure strategyand player edgeg; € &, we denote an associated scaigrthat signifies

2 plays pure strategy. the influence of nodeon nodej, wherei, j € 4. The entries

qﬁ-o: Probability that the game ends given that they aref the influence matrix lare then given as follows:

currently at game elemernty, if player 1 plays pure ! _{ Wy if e €&

strategyi and player 2 plays pure strategy 0 otherwise

1)

my: Number of pure strategies for player 1 at game
elementl. where 0< wjj <1Vi,je / and 3 ,wij =1, Vje ..
n: Number of pure strategies for player 2 at gamélote that here we allow for the edges of the fomyy =
elemently. 1-3{i.;Wj, which signifies the portion of influence of a
p (p=2"): Number of game elements of the stochasti®tode on the independent security asset of itself.
game, or the number of states of the state space. Lets={s1,%,...,5} be the vector ofndependent secu-

rity assets The vector ofeffective security assetdenoted



by Xx= {X1,X2,...,X,} can then be computed by theluence 2") where S € {0,1}", k=1,...,p. Here a node is said

equation to be in state 1 if it is compromised and O otherwise. Note
x=Is. (2) that we consider a discrete-time Markov chain where the

system can transit from one state to any state of the state

H HY n A | —
With the conditiony iy wij = 1,vj =€ ./, we have that space (including the original state). The influence equatio

n n n

Ji\Sj iiwij = ilsj. 3)

Therefore, the sum of all the effective security assets is
equal to the sum of all the independent security assets.
The influence matrix thus signifies the redistribution of
security assets. The independent security asset of a inode
is redistributed to all the nodes in the network that have
influence oni (including itself). When a node is down, the
node itself and all the edges connected to it will be removed
from the graph. Thus the security loss of the network will be
the node’s effective security asset (instead of its inddpah
security asset). Conversely, if a node is brought back to the
network, it regains its original influence on other nodes. In g 0.7 1

7/8
either case, the entries of the influence matrix have to be {
normalized to satisfys! ;wij = 1, Vj € 4. For a quick 0.2 CQ
justification of this linear influence model, consider a GSM
network, where a base station controller (BSCjontrols 0.1 0.1 1/8
several base transceiver stations (BTS), including BT8
a BSC fails, all the BTSs connected to it will be out of Ql) Ql)

Fig. 2. An example state diagram for the network in Fig. 1.

service. On the contrary, if only one BTS is compromised,

the communication among the subscribers under other BTSs

should not be affected (provided that the rest of the networkig. 3. Changes in a linear influence network for securityetsssvhen
is up and running). In such a situation, we can have fdtodes are compromised (Example 1).

examplew;j; = 0.7 andwij = 0.3. If the BSC is down, there

is still an amount of security asset78; left, even though (2) can be written as:

the BTS is not in service anymore. The reason is that, if this (1) (1)
BTS gets connected to another BSC (or if the original BSC X(ll) 09 02 0 5(11)
is up again), they will together create an added securitgtass X2 = 0 070 S; (4)
for the network. We present in what follows an example to xgl) 01 01 1 %(1)

illustrate the linear influence network model. Now suppose that node 1 is compromised; then the in-

W11 Woo dependent security asset of node 3 will remain the same,
(2) _ 1 i : .
sy’ = s;7. The independent security asset of node 2 will

W12 be decreased by an amount corresponding to the influence

of node 1 on node 25(22) = 3(21> —0.23(2l> = 0.85(21). Also,

the influences on each node have to be normalized to have

Yiwij = 1. Thus we now havers, =1/8 andw,, = 7/8, and

W31 Ws2 the influence equation becomes
2 2
X _<7/8 o) s )
Thus we can see
W33

@ _ 2) _ (1)
Fig. 1. A linear influence network for security assets of ae¢hnode X(22) o (7/8)3(22) - (32)732 ’ e
network. X3 = (1/8)s,”+s;7 =0.1s;7 +s5".

Example 1:Suppose that we have a network of three After node 1 goes down, the effective security asset of
nodes with correlations as shown in Fig. 1. As shown in Fighode 2 remains the same, while that of node 3 is decreased
2, the states of the system are given{&?,sz,...sp} (p= by an amount representing its influence on node 1.



Now if node 3 is in turn compromised, we have a network 0.7 0.5 0.7

with one node as in Fig. 3. We have

& _ 2428 (7/8)82 075!,

0.2

2= s 01\ 0.3 0.1\
© (3)
O

(1

B. Linear influence network model for vulnerabilities

©

0.9 0.
In this subsection, we use the linear influence network

model to represent the correlation of node vulnerabilities Fig. 4. A linear influence network for vulnerabilities andetbhanges of

a network. Beside the correlation of security assets, nod@&rers when one node is compromised.

also have influence on others’ vulnerabilities. For example

within a corporate network, if a workstation is compromised

the data stored in this computer can be exploited in attacks“l' THEZI\EIE(I—)\{VSOURMKSSTEOC(;JI-TABI('IT:R(?AI?I\hEM AS A
against other workstations; these latter computers thills wi

become more vulnerable to intrusion. Under the framework. A brief overview of zero-sum stochastic games

of stochastic games, this kind of influence is readily incor- . . . . .

porated. For instance, in the network of Example 1, if the In this subs_ectlon, we provide a brief overview OT zero-
Attacker attacks node 1, and the Defender decides not ¥ m.stochastlc games based on [8]. A stochastic game
defend this node, the probability that the system goes froﬁ]ons'StS _ofp game elementfk, k= 1"'.‘ . Each game
(0,1,0) to (1,1,0) will be greater that the probability that element is associated with an, x ng matrix, whose entries
the system goes frort0,0,0) to (1,0,0), if node 2 has some are given by p

influence on node 1 in terms of vulnerability. Fay € &, aﬁ = a}j— + Z qikjlrh (8)
we define thesupport matrixas follows =1

- hij if gjedé Kl o - .
H_{ 0  otherwise, (6) WheLeq” > 0, l=1...,pi=1....m, j=1...n,

where hjj signifies the support that nodegives nodej Zqikjl < 1 ki, j. 9)
(against attacks), € hjj <1Vi, j € 4. Thesupportto node I=1
i, ] €4 is defined as Expression (8) can be interpreted as follows. At game

n elemently, if player 1 chooses pure strategyand player

hj = Zhij, (7) 2 chooses pure strategy player 2 has to pay player 1 an
i= amountal . Furthermore, there is a probabiligf that both

where 0< hj < 1, Vj € 4. Unlike the model for security players have to play game eleméntnext, and a probability
assets, here we do not normalibg. When a node that P
supports nodej is down, h; will decrease, and thus the qikjoz 1- th-' (20)
probability that nodej is compromised under attack will I=1
increase. Let us denote kpt the probability that nodg is  that the game will end. With condition (9), the probability
compromised at each state. We assume an affine relationsbipinfinite play is guaranteed to be zero, and the expected
betweenpé andh; as follows: payoff of player 1 (or the expected loss of player 2), which
. is accumulated through all the stages of the game, is finite
« If node j is not attacked thep! = 0. _
« If nodej is attacked, and the Defender is not defending A strategy for player 1 is a set ofi-vectors, denoted by
this node,ps = pyo — (Pao — Py ), wherepyy andply K k—1 " p t=1,2..., each of which satisfies
are the probabilities that the node is compromised given

that the support is equal to 1 (full support) and O (no < y—1 (11)
support), respectivelyp!, < pl). i; ' ’
« If nodej is attacked, and the Defender is defending this y:“ >0 (12)

node, p{ = pl, — (Po — Py )N}, wherepl; and p}, are
the probabilities that the node is compromised given thatereyi is the probability that player 1 plays pure strategy
the support is equal to 1 and 0, respectivady, (< p),). 1 if he is playing game elemerii at thet-th stage of the
. Also, it is assumed thap}, < p!; and p}, < pl,,. game. A strategy is said to be stationary if the vecigts
are independent df for all k. In this case, the superscript
A weighted directed graph for network vulnerabilities iscan be omitted. Similarly, a strategy for player 2 is a set of
shown in Fig. 4. ne-vectors,2¢, wherey '™, 2! = 1 andz! > 0. Given a pair



of strategies, we can compute the vector of expected payotif the compromised nodes and the game restartS; at
V= (V1,Vo,...,Vp), Wherevw, k=1,...,p is the expected and a probabilityp‘é € (0,1) that the game will end (which

payoff (to player 1) if the first stage of the gamelig. means the Defender has detected the Attacker and stopped
With the above settings, it is known [8], that we carhim from further intruding). Note thapk+ pk < 1 with
replace the game elemeht by the value component equality only whenS = §(0,0,...,0). Similarly, at one
point, if the Attacker chooses not to attack at all, there is
vk = val(By), (13)

a probability pmr (0,1) that the network will go back to
whereval(By) is the value (in mixed strategies) of the matrixstate Sy, and a probabllltyp@e (0,1) that the game will
gameBy, andBy is themy x n, matrix whose entries are given end. leen 0 pdl, pnl, pdo, pn0 <1l jes, pr, pe, pmL
by and pq,e, k=1,...,p, and the support matriki, pk andq '
can be calculated using the equations in Subsection II B. A
i =& +|Zlq” I (14)  humerical example is shown in Section V.

B. A zero-sum stochastic game model for network security

. . . C. Existence, uniqueness, and structure of the solution
In this subsection we formulate the security problem as a a

zero-sum stochastic game. This is a modified version of the We present in this subsection some analytical results for
game presented in [6], applied to the linear influence nétwothe game given in 11I-B, based on zero-sum stochastic game
model proposed in Section Il. At each st&tiek=1,...,p, theory [8], [9].

the Attacker’s pure strategies consistmf=n+1 actions,  Proposition 1: In the zero-sum stochastic game given in
wheren is the number of nodes in the network: 111-B, the probability of infinite play is zero and the expedt
« Attack one ofn nodes,cik, wherei=1,...,n. payoff of the Attacker (which is also the expected cost of
« Do nothing,cf, = 0. the Defender) is finite.

Note that this strategy space is for use with more gener@ith the setup in Ill-B, we can show thq,‘§ =1-3F 1q
payoff formulations. However, with the payoff formulationO, Yk andV i, j of each game elemeft. Thus the propo-
in this paper, the Attacker will not have motivation to akac sition is proved using the theory of stochastic games.

a node that is already compromised, unless all the nodesProposition 2: (Theorem V.3.3 [8]) In the zero-sum
have been compromised. For eaghthe Defender's pure stochastic game given in IlI-B, there exists exactly ongmec

strategies ard d<}, where v=(V1,V2,...,Vp) that satisfies (13) and (14).
. Defend nodd, d¥,i=1,...,nc—1, Using the results from 1lI-A, we can then compute the NE
« Do nothmg dk =0, of the game, which is a pair of stationary mixed strategies

Attacker’s and the Defender’s pure strategies, the enties  Proposition 3: (Theorem V.3.3 [8]) The vector v =

the payoff matrix are: (v1,V2,...,Vp) that satisfies (13) and (14) can be derived
: through the following recursive equations:
_ ok Kl
=4 +|;qij ri, (15) VY = (0,0,...,0), (16)
whereal;  pK(cl,d)XX(i), p(ck,d) is the probability that b = af+ Zlq"'vr (17)
the attack is successful, andi(i) is the effective security " . ‘r
asset of the node being attackédNote that once a node Vit = val(By) = val(bj). (18)

is compromised, the effective security assets and the sujfe can stop the recursion at a desired level of accuracy and

ports of the remaining nodes have to be recalculated #en use the current value of vector= (vi,v,...,Vp) t0

in Example 1 and Fig 4. As mentioned in Subsection llIcomputeBy using (14). The mixed strategies of the players

B, the probabilitiesp§, and thusql{, are dependent on the at each game element, are the NE in mixed strategies of

supports to the nodes, and are therefore affected by tHee matrix gamey. The strategies so obtained will converge

correlation in vulnerabilities of the nodes. It can be saido optimal stationary strategies of the stochastic game.

that once we have incorporated node vulnerabilities into

our model, we have already implicitly taken care of the IV. ANUMERICAL EXAMPLE

cost of attacking/defending. For example, if a node is of

high security asset but difficult to compromise (the traosit In this section, we implement numerical simulation for

probability to the compromise state is small), the Attackea specific network with three nodes. The setup in IlI-B

may turn to another node with a smaller security asset, whigh carried over with some further assumptions as follows.

is easier to attack. First, we adopt a simplified state diagram as given in Fig. 1.
At a stateS,, if the Attacker chooses to attack one nodeBasically, after each time step, we only allow for transitio

and the attack fails, there is a probabilipf < (0,1) that where one more node is compromised, the transition that

the network will go back to stat&; (which means the returns to the same state, and the transition ba&(@0,0).

Defender has detected the Attacker and managed to rest@econd, suppose that the influence equation is given as



follows (Example 1) GE Node 1| Node 2| Node 3| Do nothing
M 1(0,0,0) | 0.6126 | O 0.3874 | O
Xy 09 02 0 10 11 2(0,0,1) | 0.3817 | 0.6183 | O 0
x| = ( 0 07 o) ( 10) = ( 7 ) 3(0,1,0) | 0.6415 | 0 0.3585 | 0
xél) 01 01 1 20 22 40,11 |1 0 0 0
(19) 5(1,0,0) | O 0.6568 | 0.3432 | 0
and the support matrix is given by (Fig. 4) 6(1,0,1) | O 1 0 0
07 0 0 7(1,1,0) | O 0 1 0
H=| o2 o5 o | (20) 8(1,1,1) | 0.25 0.25 0.25 0.25
0.1 03 09 TABLE |
. j i i j i OPTIMAL STRATEGIES FOR THEATTACKER AT EACH GAME ELEMENT
Fll(nally, Py =02, p:lill =0.4, lido =0.5, p,p=0.7,V] ekJV, (GE).
pr=02 Vk#1, pr =07 pg=03, Vk=1,...,p, pg =
0.2, Vk#1, pg, = 0.7, andpk, = 0.3, vk=1,...,p.
For example, suppose the system is af GE Node 1| Node 2| Node 3| Do nothing
S (0,0,0). The next state could be one in|1(0,0,0) | 00702 |0 0.9298 | 0
{S; (0,00, S (0,0,1), S (0,1,0), S (1,0,0)}. 2(0,0,1) | 0.6614 | 0.3386 | O 0
The Attacker’s pure strategies include213, and 0, which | 3 (0,1,0) | 0.0869 | 0 09131 | O
mean to attack node 1, node 2, node 3, and do nothing,4 (0,1,1) | 1 0 0 0
respectively. Similarly, the Defender’s pure strategresude 5(1,0,0) | O 0.034 | 0966 |0
1,2,3, and 0. Using the above results, we have that 6(1,0,1) | O 1 0 0
1 1 1 7(1,1,0) | O 0 1 0
a = Pt 11)X(1 ¢ . 8(11,1) | 025 025 |025 [025
qié - (]]'-_ pS(17 1))(1_ p )1 TABLE |l
qu_l_ ps(la 1)1 OPTIMAL STRATEGIES FOR THEDEFENDER AT EACH GAME ELEMENT
gy = O0Vj#15

where pt(1,1) = pgo — (Pdo — Pd1)1 = pq1, as at this state,
node 1 still has full support. Also, there is a probabibé‘?:
(1—pi(1,1))p'® > 0 that the game will end. If the Attacker
attacks node 1 and the Defender defends node 2, we h
that

ap, = p%(l,Z)x(ll),

aiz = (1—p3(1,2)(1-p"),
w3 = pi(L2),

gh = OVj#L5,

where pi(1,1) = pro — (Pro — Pr1)1 = pr1, again as at this
state, node 1 still has full support. Also, there is a prolitgbi
g’ = (1—p3(1,2))p*® > 0 that the game will end. Now,
suppose that the system isSat(1,0,0). The next state could
be one in{$; (0,0,0), S5 (1,0,0), S (1,0,1), Sy (1,1,0)}.

The Attacker's pure strategies include32 and 0, which

mean to attack node 2, node 3, and do nothing, respective

Similarly, the Defender’s pure strategies includ&,2and 0.
Now we have that

8, = pA2.2x%,

By = pi2.2).

B = (1-pi(22)p;,

B3 = (1-p(2.2)(1-p?—pR),
Gy = 0Vj#157,

(1—p2(2,2))p> > 0 that the game will end. The other entries
of other game elements can be calculated in a similar way.

e. ; : ) o
a[\J/smg the recursive procedure given in Proposition 3, we

can then compute the optimal strategy of each player and
the value of the game. The value vector converges to an
accuracy of 10* after 56 iterations. The optimal strategies
of the Attacker and the Defender, and the value vector are
given in Tables I, Ill, and Ill. As can be seen from Table
I, for example, when all the nodes are up and running, the
Attacker wants to attack node 1 with probabilityp026 and
node 3 with probability 874, while the Defender wants
to defend node 1 with probability.0702 and node 3 with
probability 09298. Recall that the effective security assets of
nodes 1 2, and 3 at this state are 17, and 22, respectively.

It is worth noting that the mixed strategies for the players
n also be interpreted as the way to allocate their ressurce
in"the security game.

GE
Payoffs
GE
Payoffs

1
19.6078
5
17.9659

2
158301
6
13.0283

TABLE Il
THE VALUE VECTOR (THE EXPECTED PAYOFFS OF THEATTACKER, ALSO

3
17.9557
7
15.3228

4
12.3392
8
7.8431

where p§(2, 2) = pczjo — (pgo — pgl)o_s, as at this state, node THE EXPECTED LOSSES OF THIDEFENDER AT EACH GAME ELEMENT).

2 has a support of .8. Also, there is a probabilit)pge:



V. CONCLUSION

In this paper we have proposed a new network modeli]
based on linear influence networks to represent the inter-
dependence of nodes in terms of security assets and vul-
nerabilities. We took the first step to formulate the segurit [2]
game between an Attacker and a Defender over this network
using the framework of zero-sum stochastic game theory.
The optimal solution obtained allows one to comprehend th¢g]
behavior of a rational attacker, as well as to provide IDSs
with guidelines on how to allocate their resources. Moreove 4
modeling networks with linear influence network models
helps facilitate solving the security games using software
programs. As mentioned earlier, apart from a node’s sgcurit[5]
asset, if we take into account the players’ motivations, the
cost of attacking, the cost of monitoring, and other fagtors
the game is no longer a zero-sum one. This work thus cahﬁ]
be extended to nonzero-sum stochastic games, where we
can address more flexible and practical payoff formulations(’]
Furthermore, in many real-world scenarios, neither the At-
tacker nor the Defender has full knowledge of the network’s[g]
nodes and their correlation. Thus studying stochasticriggcu [©)
games with incomplete information is an intriguing researc
direction.
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